
Quantifying Privacy Loss
of Human Mobility Graph Topology

Dionysis Manousakas∗, Cecilia Mascolo∗,†, Alastair R. Beresford∗,
Dennis Chan∗, Nikhil Sharma‡

∗University of Cambridge
†The Alan Turing Institute

‡UCL

The 18th Privacy Enhancing Technologies Symposium
July 24–27, 2018



Mobility data privacy vs. utility
• Information sharing for data-driven customization and large-scale

analytics
• context-awareness
• transportation management, health studies, urban development

• Utility-preserving anonymized data representations
• timestamped GPS, CDR, etc. measurements
• histograms
• heatmaps
• graphs

• How privacy conscientious they are?
• often poorly understood, leading to privacy breaches
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Deanonymizing mobility

Raw mobility data
Inference on individual traces information

1 Sparsity and regularity-based
• ”top-N” location attacks

[Zang and Bolot, 2011]
• unicity of spatio-temporal points

[de Montjoye et al., 2013]
• matching of individual mobility histograms

[Naini et al., 2016]
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Deanonymizing mobility

Raw mobility data

Inference on individual traces information

2 Probabilistic models
• Markovian mobility models

[De Mulder et al., 2008]
• Mobility Markov chains [Gambs et al., 2014]
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Deanonymizing mobility

Raw mobility data
Inference on population statistics

3 On aggregate information
• Individual trajectory recovery from

aggregated mobility data [Xu et al., 2017]
• Probabilistic inference on aggregated

location time-series [Pyrgelis et al., 2017]
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Motivation

Let’s remove
• temporal (except from ordering of states)
• geographic, and
• cross-referencing information

– What is the privacy leakage of this
representation?
– Does topology still bear identifiable
information?
– Can an adversary exploit it in a
deanonymization attack?
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Mobility information flow
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Differences of our approach

Mobility deanonymization

• No cross-referencing between
locations

• No fine-grained temporal
information (as opposed to
[Lin et al., 2015])

Privacy on graphs
• Each user’s information is an

entire graph: No need for
node matching
[Narayanan and Shmatikov, 2008,
Sharad and Danezis, 2014]

• No social network
information
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Data

• Device Analyzer : global dataset from mobile devices with system
information, cellular and wireless location

• 1500 users with the most cid location datapoints
• average of 430 days of observation,
• 200 regions of interest

• cids pseudonymized per handset
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Mobility networks

Graphs with nodes corresponding to ROIs and edges to recorded
transitions between ROIs

• Network Order Selection via Markov chain modeling of sequential
data [Scholtes, 2017]

• Node attributes with no temporal/geographic information
• Edge weights corresponding to frequency of transitions
• Location pruning to top−N networks by keeping the most frequently

visited regions in user’s routine
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Empirical statistics

Graphs with:
• heavy-tailed degree distributions
• large number of rarely repeated transitions
• small number of frequent transitions
• high recurrence rate
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Privacy framework

k−anonymity via graph isomorphism

Graph k−anonymity

is the minimum cardinality of isomorphism classes within a population
of graphs

[Sweeney, 2002]
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Identifiability of top−N mobility networks

directed undirected
• 15 and 19 locations suffice to form uniquely identifiable directed and

undirected networks
• 5 and 8 are the corresponding theoretical upper bounds
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Anonymity size of top−N mobility networks

• small isomorphism clusters for even very few locations
• median anonymity becomes one for network sizes of 5 and 8 in

directed and undirected networks respectively
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Recurring patterns in typical user’s mobility

1st half of the observation period 2nd half of the observation period

shown edges correspond to the 10% most frequent transitions in the respective
observation window
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Threat Model
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Threat Model
DISCLOSED IDs

Gtrain

UNDISCLOSED IDs
Gtest

• closed-world
• partition point for each user randomly ∈ (0.3, 0.7) of total obs. period
• state frequency information
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Threat Model
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Attacks: Uninformed Adversary

P
(
lG′ = lGi

)
= 1/|L|,

for every Gi ∈ Gtrain
expected rank=|L|/2
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Attacks: Informed Adversary

P
(
lG′ = lGi |Gtrain,K

)
∝ f

(
K(Gi,G′)

)
,

for every Gi ∈ Gtrain
K : graph similarity metric,
f : non-decreasing
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Attacks: Informed Adversary

• Posterior probability
P
(
lG′ = lGi |Gtrain,K

)
∝ f

(
K(Gi,G′)

)
, for every Gi ∈ Gtrain

• Privacy Loss

PL
(
G′;Gtrain,K

)
=

P
(
lG′ = lG′

true
|Gtrain,K

)
P
(
lG′ = lG′

true

) − 1

PETS’18 Method 22



Graph Similarity Functions

Graph Kernels
Express similarity as inner product of vectors with graph statistics
[Vishwanathan et al., 2010]

• on Atomic Substructures (e.g. Shortest-Paths, Weisfeiler-Lehman
subtrees)

K(G,G′) =

⟨
ϕ(G)

||ϕ(G)|| ,
ϕ(G′)

||ϕ(G′)||

⟩
• Deep Kernels [Yanardag and Vishwanathan, 2015]

K(G,G′) = ϕ
(
G
)TMϕ

(
G′)

M: encodes similarities between substructures
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Kernel-assisted Ranking

• f(·) = 1
rank(·)

• mean correct rank under DSP (random) at 140 (750)
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Privacy Loss

• mean = 27

• median = 2.52
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Takeaways

• Location pruning does not necessarily make network more
privacy-preserving

• Including rare transitions in longitudinal mobility did not add
discriminative information

• Deanonymization is assisted by frequency of locations,
directionality of transitions
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Future Directions

• Geometry of kernel feature spaces: high dimensional space with
meaningful neighborhood relations

• Other graph similarity techniques: network alignment, persistent
cascades, frequent/discriminative substructure mining, anonymous
walks, spectral representations

• Application to other categories of sequential datasets: web
browsing behaviour, smartphone app usage

• Formal privacy guarantees for mobility networks
• Utility preserving defense mechanisms: kernel-agnostic defense,

randomisation of node
• Generative mechanisms for synthetic traces with anonymity

guarantees attributes, perturbations of edges, node removal
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Summary of findings

We investigated privacy properties of graph representations of
longitudinal mobility

• New deanonymization attack on mobility data using structural
similarity with historical information

• Evaluation on large dataset of cell-tower location traces
• network representations of mobility display distinct structure, even

for small number of nodes
• < 20 locations are enough to identify uniquely a population of

1500 users
• kernel-based distance functions can quantify similarity in absence of

location semantics and fine-grained temporal information
• probabilistic deanonymization using similarity with historical data can

achieve median success probability 3.5× higher than a random
mechanism
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Thanks!
Any Questions?

dm754@cam.ac.uk
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